

Chemistry Standard level Paper 1

Wednesday 16 May 2018 (afternoon)

45 minutes

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [30 marks].

								The	Perio	dic Ta	able							
	~	7	ო	4	5	9	2	80	6	10	7	12	13	4	15	16	17	18
-	1.01 1.01			Atć	omic numt Element	Jer	_										L	2 He 4.00
Я	3 Li 6.94	4 Be 9.01		Relati	ve atomic	mass							5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
e	11 Na 22.99	12 Mg 24.31		-									13 AI 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 CI 35.45	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.63	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.90
ں ب	37 Rb 85.47	38 Sr 87.62	39 × 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.96	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
9	55 Cs 132.91	56 Ba 137.33	57† La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
~	87 Fr (223)	88 Ra (226)	89‡ Ac (227)	104 Rf (267)	105 Db (268)	106 Sg (269)	107 Bh (270)	108 Hs (269)	109 Mt (278)	110 Ds (281)	111 Rg (281)	112 Cn (285)	113 Unt (286)	114 Uug (289)	115 Uup (288)	116 Uuh (293)	117 Uus (294)	118 Uuo (294)
			+	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97	
			#	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

- **1.** Which is a homogeneous mixture?
 - A. Oil and water
 - B. Sand and water
 - C. Ethanol and water
 - D. Chalk and sand
- **2.** What is the molecular formula of a hydrocarbon containing 84.6% carbon by mass with a molar mass of 142.3 g mol⁻¹?
 - $\mathsf{A.} \quad \mathsf{C}_{_{20}}\mathsf{H}_{_{44}}$
 - B. C₁₁H₁₀
 - C. C₁₀H₂₂
 - D. C₅H₁₁
- **3.** Which graph shows the relationship between the volume and pressure of a fixed mass of an ideal gas?

4. What is the percentage yield when 7 g of ethene produces 6 g of ethanol?

 M_r (ethene) = 28 and M_r (ethanol) = 46

 $C_2H_4(g) + H_2O(g) \rightarrow C_2H_5OH(g)$

- $A. \qquad \frac{6 \times 7 \times 100}{28 \times 46}$
- $\mathsf{B.} \qquad \frac{6 \times 46 \times 100}{7 \times 28}$
- $C. \qquad \frac{6 \times 28}{7 \times 46 \times 100}$
- $D. \qquad \frac{6 \times 28 \times 100}{7 \times 46}$
- **5.** Which shows the number of subatomic particles in ${}^{31}P^{3-}$?

	Protons	Neutrons	Electrons
A.	15	16	18
В.	15	16	12
C.	16	31	15
D.	31	31	15

- 6. Which are correct statements about the emission spectrum of hydrogen in the visible region?
 - I. The red line has a lower energy than the blue line.
 - II. The lines converge at longer wavelength.
 - III. The frequency of the blue line is greater than the frequency of the red line.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

	Bonding	Conduction of electricity (pure substance)	pH of aqueous solution
A.	covalent	as a solid and liquid	low
В.	covalent	as a solid only	high
C.	ionic	as a solid and liquid	low
D.	ionic	as a liquid only	high

7. Which describes the oxide of sodium, Na₂O?

- **8.** Which statement is correct?
 - A. Atomic radius decreases down group 17.
 - B. First ionization energy decreases down group 1.
 - C. Atomic radius increases across period 3 from Na to Cl.
 - D. First ionization energy decreases across period 3 from Na to Cl.
- 9. What is the formula of ammonium phosphate?
 - A. $(NH_3)_3PO_4$
 - B. $(NH_4)_3PO_4$
 - C. $(NH_4)_2PO_4$
 - D. (NH₃)₂PO₃
- 10. Which form of carbon is the poorest electrical conductor?
 - A. Graphite
 - B. Graphene
 - C. Diamond
 - D. Carbon nanotube

11. What is the molecular geometry and bond angle in the molecular ion NO_3^{-2} ?

	Molecular geometry	Bond angle
A.	tetrahedral	109.5°
В.	trigonal planar	120°
C.	trigonal pyramidal	107°
D.	trigonal planar	109.5°

- **12.** What are the strongest intermolecular forces between molecules of propanone, CH₃COCH₃, in the liquid phase?
 - A. London (dispersion) forces
 - B. Covalent bonding
 - C. Hydrogen bonding
 - D. Dipole-dipole forces
- **13.** The enthalpy of combustion of ethanol is determined by heating a known mass of tap water in a glass beaker with a flame of burning ethanol.

Which will lead to the greatest error in the final result?

- A. Assuming the density of tap water is $1.0 \,\mathrm{g \, cm^{-3}}$
- B. Assuming all the energy from the combustion will heat the water
- C. Assuming the specific heat capacity of the tap water is $4.18 \text{ Jg}^{-1} \text{ K}^{-1}$
- D. Assuming the specific heat capacity of the beaker is negligible

14. What is the enthalpy of combustion of butane in **kJ mol**⁻¹?

$$2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(l)$$
$$C(s) + O_2(g) \rightarrow CO_2(g) \qquad \Delta H = x \text{ kJ}$$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l) \qquad \Delta H = y \text{ kJ}$$

$$4\mathrm{C}(\mathrm{s}) + 5\mathrm{H}_{2}(\mathrm{g}) \rightarrow \mathrm{C}_{4}\mathrm{H}_{10}(\mathrm{g}) \qquad \Delta H = z \mathrm{~kJ}$$

- A. 4x + 5y z
- B. 4x + 5y + z
- C. 8x + 10y 2z
- D. 8x + 5y + 2z
- **15.** Which statement is correct?
 - A. In an exothermic reaction, the products have more energy than the reactants.
 - B. In an exothermic reversible reaction, the activation energy of the forward reaction is greater than that of the reverse reaction.
 - C. In an endothermic reaction, the products are more stable than the reactants.
 - D. In an endothermic reversible reaction, the activation energy of the forward reaction is greater than that of the reverse reaction.
- **16.** Which change increases the rate of formation of hydrogen when zinc reacts with excess hydrochloric acid, assuming all other conditions remain the same?

 $Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$

- A. Adding water to the hydrochloric acid
- B. Decreasing the temperature
- C. Increasing the volume of hydrochloric acid
- D. Decreasing the size of the zinc particles while keeping the total mass of zinc the same

- **17.** Which statements are correct?
 - I. The activation energy of a reaction is not affected by temperature.
 - II. A catalyst reduces the enthalpy change of a reaction.
 - III. Catalysts provide alternative reaction pathways.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **18.** The equilibrium constant for $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ is *K*.

What is the equilibrium constant for this equation?

$$2N_2(g) + 6H_2(g) \rightleftharpoons 4NH_3(g)$$

- A. *K*
- B. 2K
- C. *K*²
- D. 2K²
- **19.** Which classification is correct for the reaction?

$H_2PO_4^{-}(aq) + H_2O(l) \rightarrow HPO_4^{-}(aq)$	$O_4^{2-}(aq) + H_3O^+$	(aq)
---	-------------------------	------

	Brønsted–Lowry Acid	Brønsted–Lowry Base
A.	H ₂ O	$H_2PO_4^-$
B.	HPO4 ²⁻	$H_2PO_4^-$
C.	$H_2PO_4^-$	H_3O^+
D.	$H_2PO_4^-$	H ₂ O

- 20. What are the products of the reaction between sulfuric acid and sodium hydrogen carbonate?
 - A. $NaSO_4 + H_2O + CO_2$
 - B. $Na_2SO_4 + CO_2$
 - C. $Na_2SO_4 + H_2O + CO_2$
 - D. $NaSO_4 + H_2CO_3$
- 21. Which equation shows oxygen undergoing reduction?
 - A. $2F_2 + O_2 \rightarrow 2F_2O$
 - B. $Na_2O + H_2O \rightarrow 2NaOH$
 - $\mathsf{C}. \qquad \mathsf{H}_2\mathsf{O}_2 + 2\mathsf{H}\mathrm{I} \rightarrow 2\mathsf{H}_2\mathsf{O} + \mathrm{I}_2$
 - $\mathsf{D}. \qquad \mathsf{2CrO_4^{2-}} + \mathsf{2H^+} \rightleftharpoons \mathsf{Cr_2O_7^{2-}} + \mathsf{H_2O}$
- **22.** What are the products of electrolysis when molten calcium bromide is electrolysed using graphite electrodes?

	Product at cathode (negative electrode)	Product at anode (positive electrode)
A.	calcium	bromine
В.	bromine	calcium
C.	calcium ions	bromide ions
D.	bromide ions	calcium ions

- 23. Which coefficients correctly balance this redox equation?
 - $\mathsf{aFe}^{^{2+}}(\mathsf{aq}) + \mathsf{MnO}_4^{^-}(\mathsf{aq}) + \mathsf{bH}^+(\mathsf{aq}) \rightarrow \mathsf{cFe}^{^{3+}}(\mathsf{aq}) + \mathsf{Mn}^{^{2+}}(\mathsf{aq}) + \mathsf{dH}_2\mathsf{O}(\mathsf{l})$

	а	b	С	d
A.	1	8	1	4
В.	5	4	5	2
C.	3	4	3	2
D.	5	8	5	4

- **24.** What are possible names of a molecule with molecular formula $C_4H_{10}O$?
 - I. 1-Methoxypropane
 - II. 2-Methylpropan-2-ol
 - III. Butanal
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 25. What is the product of the reaction between hex-3-ene and steam?
 - A. Hexan-1-ol
 - B. Hexan-2-ol
 - C. Hexan-3-ol
 - D. Hexan-4-ol
- 26. Which of these reactions proceeds by a free radical mechanism in the presence of UV light?
 - A. $C_6H_6 + Cl_2 \rightarrow C_6H_5Cl + HCl$
 - $\mathsf{B}. \qquad \mathsf{C}_6\mathsf{H}_6 + 3\mathsf{H}_2 \rightarrow \mathsf{C}_6\mathsf{H}_{12}$
 - $\mathsf{C}. \qquad \mathsf{C}\mathsf{H}_2\mathsf{C}\mathsf{H}_2 + \mathsf{H}\mathsf{B}\mathsf{r} \to \mathsf{C}\mathsf{H}_3\mathsf{C}\mathsf{H}_2\mathsf{B}\mathsf{r}$
 - D. $CH_3CH_3 + Cl_2 \rightarrow CH_3CH_2Cl + HCl$
- **27.** Which compound could be formed when CH₃CH₂CH₂OH is heated with acidified potassium dichromate(VI)?
 - I. CH_3CH_2CHO
 - II. CH_3CH_2COOH
 - III. CH_3COCH_3
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

28. Which value of *q*, in J, has the correct number of significant figures?

 $q = mc\Delta T$

– 11 –

where m = 2.500 g, $c = 4.18 \text{ Jg}^{-1} \text{ K}^{-1}$ and $\Delta T = 0.60 \text{ K}$.

- A. 6
- B. 6.3
- C. 6.27
- D. 6.270
- 29. What is the index of hydrogen deficiency, IHD, of 3-methylcyclohexene?

- A. 0
- B. 1
- C. 2
- D. 3

30. What is the ratio of the areas of the signals in the ¹H NMR spectrum of pentan-3-ol?

- A. 6:4:1:1
- B. 6:2:2:2
- C. 5:5:1:1
- D. 3:3:2:2:1:1